skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Yudong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Access control is often reported to be “profoundly broken” in real- world practices due to prevalent policy misconfigurations intro- duced by system administrators (sysadmins). Given the dynamics of resource and data sharing, access control policies need to be continuously updated. Unfortunately, to err is human—sysadmins often make mistakes such as over-granting privileges when chang- ing access control policies. With today’s limited tooling support for continuous validation, such mistakes can stay unnoticed for a long time until eventually being exploited by attackers, causing catastrophic security incidents. We present P-DIFF, a practical tool for monitoring access control behavior to help sysadmins early detect unintended access control policy changes and perform postmortem forensic analysis upon security attacks. P-DIFF continuously monitors access logs and infers access control policies from them. To handle the challenge of policy evolution, we devise a novel time-changing decision tree to effectively represent access control policy changes, coupled with a new learning algorithm to infer the tree from access logs. P-DIFF provides sysadmins with the inferred policies and detected changes to assist the following two tasks: (1) validating whether the access control changes are intended or not; (2) pinpointing the historical changes responsible for a given security attack. We evaluate P-DIFF with a variety of datasets collected from five real-world systems, including two from industrial companies. P- DIFF can detect 86%–100% of access control policy changes with an average precision of 89%. For forensic analysis, P-DIFF can pinpoint the root-cause change that permits the target access in 85%–98% of the evaluated cases. 
    more » « less